
1

DiFlow

Copyright ©2016–2020, Toni Verbeiren, Data Intuitive

Graphical design and cover picture by Anneleen Maelfeyt (http://anneleenmaelfeyt.be/).

Typeset using LATEX. More info to be found at http://www.data-intuitive.com.

2

http://anneleenmaelfeyt.be/
http://www.data-intuitive.com

DIFLOW

. .
5 Introduction
5 Functional Reactive Programming (FRP)
5 FRP for pipelines

. .
6 NextFlow
6 Introduction
6 FRP in NextFlow
6 NextFlow DSL(2)

. .
7 DiFlow
7 The NoPipeline approach
7 General Requirements and design principles
7 Reproducibility
7 Pipeline Parameters vs Runtime Parameters
8 Consistent API
8 Flat Module Structure
8 Job Serialization
8 An abstract computation step
9 Toward implementation

. .
11 Step by step
11 Step 1 - Operate on a stream
11 Step 2 - Operate on a stream in parallel
12 Step 3 - Operate on a stream using a process
12 Step 4 - How map is synchronous
13 Step 5 - Introduce an ID
14 Step 6 - Add a process parameter
14 Step 7 - Use a Map to store parameters
15 Step 8 - Use a Map with a process-key
16 Step 9 - Use a ConfigMap with a shell script
18 Step 10 - Running a pipeline
20 Step 11 - A more generic process
22 Step 12 - Map/reduce in NextFlow
23 Step 13 - Files as input/output
25 Step 14 - Publishing output
27 Step 15 - Make output files/paths unique
28 Step 16 - Where to put params?
28 Step 17 - Add the output file to params
30 Step 18 - Add the output filename to the triplet
31 Step 19 - Use a closure

3

Contents

33 Step 20 - The order of events in a stream
34 Step 21 - Is the triplet really necessary?
35 Step 22 - Toward generic processes
38 Step 23 - More than one input
39 Step 24 - workflow instead of process
40 Step 25 - Custom scripts
40 Step 26 - The missing link
40 Putting it all together
40 Generate the modules
41 Pipeline main.nf
42 Pipeline nextflow.config
43 Running the pipeline

. .
44 What is missing from DiFlow?
44 Parameter checks
44 Multiple output file references
44 Per-sample configuration

. .
45 Appendix
45 Variables in nextflow.config
46 Reasons for an explicit flow
46 Resources
47 Default values

4

DIFLOW

DiFlow1,2 is an abstraction layer on top of NextFlow3’s DSL24. DiFlow is a 1 https://pointer
2 DiFlow stands for [NextFlow]
D[SL2] I[mprovement] Flow or
maybe also D[ata] I[ntuitive]
Flow?
3 https://www.nextflow.io/
4 https://www.nextflow.io/docs
/latest/dsl2.html

set of principles and guidelines for building NextFlow pipelines that allow
the developer to declaratively define processing components and the user
to declare the pipeline logic in a clean and intuitive way.

Viash5 is a tool that (among other things) allows us to use DiFlow and make

5 http://data-intuitive.com/vias
h_docs

it practical, without the burden of maintaining boilerplate or glue code.

Functional Reactive Programming (FRP)
If you’re new to Functional Reactive Programming (FRP), here are a few
pointers to posts and a video that introduce the concepts:

• An excellent Medium post6 from Timo Stöttner 6 https://itnext.io/demystifying-
functional-reactive-programmin
g-67767dbe520b

• The introduction7 to Reactive Programming you’ve been missing from
7 https://gist.github.com/staltz
/868e7e9bc2a7b8c1f754

André Staltz.
• A very insightful presentation8 by Staltz where he introduces FRP from

8 https://www.youtube.com/wa
tch?v=fdol03pcvMA

first principles (with live coding).

In what follows, we will refer to streams in line with those authors but if
you’re used to working with Rx9 you would call this an observable. 9 http://reactivex.io/

FRP for pipelines
Other initiatives have recognized that FRP is a good fit for pipeline develop-
ment. Recent research and development also confirms this:

• Skitter10 10 https://soft.vub.ac.be/~math
saey/skitter/• Krews11
11 https://github.com/weng-
lab/krews

5

Introduction

https://pointer
https://www.nextflow.io/
https://www.nextflow.io/docs/latest/dsl2.html
https://pointer
https://www.nextflow.io/
https://www.nextflow.io/docs/latest/dsl2.html
https://www.nextflow.io/docs/latest/dsl2.html
http://data-intuitive.com/viash_docs
http://data-intuitive.com/viash_docs
http://data-intuitive.com/viash_docs
https://itnext.io/demystifying-functional-reactive-programming-67767dbe520b
https://itnext.io/demystifying-functional-reactive-programming-67767dbe520b
https://itnext.io/demystifying-functional-reactive-programming-67767dbe520b
https://itnext.io/demystifying-functional-reactive-programming-67767dbe520b
https://gist.github.com/staltz/868e7e9bc2a7b8c1f754
https://gist.github.com/staltz/868e7e9bc2a7b8c1f754
https://gist.github.com/staltz/868e7e9bc2a7b8c1f754
https://www.youtube.com/watch?v=fdol03pcvMA
https://www.youtube.com/watch?v=fdol03pcvMA
https://www.youtube.com/watch?v=fdol03pcvMA
http://reactivex.io/
http://reactivex.io/
https://soft.vub.ac.be/~mathsaey/skitter/
https://soft.vub.ac.be/~mathsaey/skitter/
https://soft.vub.ac.be/~mathsaey/skitter/
https://github.com/weng-lab/krews
https://github.com/weng-lab/krews
https://github.com/weng-lab/krews

DIFLOW

Introduction
For a step-by-step introduction to NextFlow (both the original DSL as well
as DSL2), please refer to this repository12 created and maintained by the 12 https://github.com/vibbits/n

extflow-courseVIB13.
13 https://vib.be/

Another very interesting resource is this cheatsheet14 by Daniele Cook. 14 https://github.com/danrlu/
Nextflow_cheatsheetIt not only contains a handy cheat sheet, but also some conventions one

should know about as well as some pitfalls.

FRP in NextFlow
The Channel15 class used by NextFlow, itself based on the DataFlow Program- 15 https://www.nextflow.io/docs

/latest/channel.htmlming Model16 can in fact be regarded as an implementation of a Functional
16 https://en.wikipedia.org/wik
i/Dataflow_programmingReactive Programming library. Having said that, NextFlow allows one to mix

functional and imperative programming to the point that a developer is able
to shoot its own foot.

Furthermore, Channels can not be nested which complicates certain opera-
tions on the streams.

NextFlow DSL(2)
DSL217 is a crucial development in NextFlow because it avoid having to 17 https://www.nextflow.io/docs

/latest/dsl2.htmlmaintain large, monolithic pipeline definitions in one file. With DSL2, devel-
oper can spin off functionality in separate files and import what is needed.

This also potentially opens up ways to build (reusable) modules that could
be used in different projects. That is exactly what a lot of organizations
need.

6

NextFlow

https://github.com/vibbits/nextflow-course
https://github.com/vibbits/nextflow-course
https://github.com/vibbits/nextflow-course
https://vib.be/
https://vib.be/
https://github.com/danrlu/Nextflow_cheatsheet
https://github.com/danrlu/Nextflow_cheatsheet
https://github.com/danrlu/Nextflow_cheatsheet
https://www.nextflow.io/docs/latest/channel.html
https://en.wikipedia.org/wiki/Dataflow_programming
https://en.wikipedia.org/wiki/Dataflow_programming
https://en.wikipedia.org/wiki/Dataflow_programming
https://en.wikipedia.org/wiki/Dataflow_programming
https://www.nextflow.io/docs/latest/dsl2.html
https://www.nextflow.io/docs/latest/dsl2.html
https://www.nextflow.io/docs/latest/dsl2.html

DIFLOW

The NoPipeline approach
For developing the pipeline, we set out with a few goals in mind:

• Build modules where each modules deals with a specific (computational)
task

• Make sure those modules can be reused
• Make sure the module functionality can be tested and validated
• Make sure modules have a consistent API, so that

a. calling a module is straightforward
b. including a module in a pipeline is transparent and seamless

Please note that nothing in these requirements has to do with running a
pipeline itself. Rather, we consider this a bottom-up system whereby we
first focus on a solid foundation before we actually start to tie things to-
gether.

That’s why we call this the NoPipeline approach, similar to NoSQL where
‘No’ does not stand for not, but rather ‘Not Only’. The idea is to focus on the
pipeline aspect after the steps are properly defined and tested.

General Requirements and design principles
Reproducibility
I originally did not include it as a design principle for the simple reason
that I think it’s obvious. This should be every researcher’s top priority.

Pipeline Parameters vs Runtime Parameters
We make a strict distinction between parameters that are defined for the
FULL pipeline and those that are defined at runtime.

Pipeline Parameters We currently have 4 pipeline parameters: Docker pre-
fix, ddir, rdir and pdir.

Runtime Parameters Runtime parameters differ from pipeline parameters
in that they may be different for parallel runs of a process. A few examples:

• Some samples may require different filter threshold than others
• After concatenation, clustering may be run with different cluster parame-

ters

7

DiFlow

• etc.

In other words, it does not make sense to define those parameters for the
full pipeline because they are not static.

Consistent API
When we started out with the project and chose to use NextFlow as a
workflow engine, I kept on thinking that the level of abstraction should
have been higher. With DSL1, all you could do was create one long list of
NextFlow code, tied together by Channels.

With DSL2, it became feasible to organise stuff in separate NextFlow files
and import what is required. But in larger codebases, this is not really a
benefit because every modules/workflow may have its own parameters and
output. No structure is imposed. Workflows are basically functions taking
parameters in and returning values.

I think it makes sense to define an API and to stick to it as much as possible.
This makes using the modules/workflows easier…

Flat Module Structure
We want to avoid having nested modules, but rather support a pool of mod-
ules to be mixed and matched.

As a consequence, this allows a very low threshold for including third-
party modules: just add it to the collection of modules and import it in the
pipeline. In order to facilitate the inclusion of such third-party modules that
are developed in their own respective repositories, we added one additional
layer in the hierarchy allowing for such a splitting.

Job Serialization
We avoid requiring the sources of the job available in the runtime environ-
ment, i.e., the Docker container. In other words, all code and config is serial-
ized and sent with the process.

An abstract computation step
The module concept inspired us to think of an abstract way to represent a
computation step and implement this in NextFlow. We wrote [Portash] to
this end. But Portash had its shortcomings. The most important of which
was that it did not adhere to separation of concerns: execution definition
(what?) where mixed up with execution context (how?/where?). Moreover,
dynamic nature of Portash lends itself well to running a tool as a service,
but not so much in a batch process.

Nevertheless, we were able to express a generic NextFlow step as pure con-
figuration that is passed to a process at runtime. This allows for some very
interesting functionality. Some prototypes were developed, the last one of
which could run a single-cell RNA pipeline from mapping to generating an
integrated dataset combining different samples.

8

The run-configuration was provided by means of a Portash YAML spec re-
siding in the module directory. It must be stressed that not requiring the
component code to be already available inside the container is a big plus.
It means a container contains dependencies, not the actual run script so
the latter can be updated more frequently. This is especially useful during
component and pipeline development.

Our first implementation had a few disadvantages:

• It contained a mix of what to run and how to run it, but it did not con-
tain information on the container to run in. This had to be configured
externally, but then the module is not an independent entity anymore.

• Specifying and overriding YAML content in Groovy is possible, but not
something that is intuitive. We worked around that by letting the user
specify custom configuration using a Groovy nested Map.

• The module functionality was abstracted with a consistent API and the
difference between 2 modules was just a few lines of code with a differ-
ent name or pointer. But still, one had to maintain that and making a
similar change in a growing set of module files is a recipe for mistakes.

But overall, the concept of an abstract computation step proved to work, it
was just that a few ingredients were still missing it seemed. On the positive
side, we showed that it’s possible to have an abstract API for (NextFlow)
modules that keeps the underlying implementation hidden while improving
the readability of the pipeline code.

Toward implementation
What is needed as information in order to run a computation step in a
pipeline?

1. First, we need data or generally speaking, input. Components/modules
and pipelines should run zero-touch, so input has to be provided at
startup time.

2. Secondly, we need to know what to run en how to run it. This is in effect
the definition of a modules or pipeline step.

3. Thirdly, in many cases we will require the possibility to change parame-
ters for individual modules in the pipeline, for instance cutoff values for
a filter, or the number of clusters for a clustering algorithm. The classical
way to do that is via the params object.

One might wonder if there is a difference between input and parameters
pointing to input is also a kind of parametrization. The reason those are
kept apart is that additional validation steps are necessary for the data.
Most pipeline systems trace input/output closely whereas parameters are
ways to configure the steps in the pipeline.

In terms of FRP, and especially in the DataFlow model, we also have to
keep track of the forks in a parallel execution scenario. For instance, if 10
batches of data can be processed in parallel we should give all 10 of them
an ID so that individual forks can be distinguished. We will see that those
IDs become crucial in most pipelines.

9

We end up with a model for a stream/channel as follows (conceptually):

[ID, data, config]

were

• ID is just a string or any object for that matter that can be compared later.
We usually work with strings.

• data is a pointer to the (input) data. With NextFlow, this should be a Path
object, ideally created using the file() helper function.

• config is a nested Map where the first level keys are chosen to be simply an
identifier of the pipeline step. Other approaches can be taken here, but
that’s what we did.

This can be a triplet, or a list with mixed types. In Groovy, both can be used
interchangeably.

The output of a pipeline step/mudules adheres to the same structure so
that pipeline steps can easily be chained.

10

DIFLOW

Let us illustrate some key features of NextFlow together with how we use
them in DiFlow and approach this step by step.

The code blocks below are run with the following version of NextFlow:

nextflow -v

nextflow version 20.10.0.5430

Step 1 - Operate on a stream
Let us illustrate the stream-like nature of a NXF Channel using a very simple
example: computing 1 + 1.
// Step - 1
workflow step1 {

Channel.from(1) \
| map{ it + 1 } \
| view{ it }

}

This chunk is directly taken from main.nf, running it can be done as follows:

> nextflow -q run . -entry step1
WARN: DSL 2 IS AN EXPERIMENTAL FEATURE UNDER DEVELOPMENT -- SYNTAX MAY CHANGE IN FUTURE RELEASE
2

Step 2 - Operate on a stream in parallel
NextFlow (and streams in general) are supposed to be a good fit for parallel
execution. Let’s see how this can be done:
// Step - 2
workflow step2 {

Channel.from([1, 2, 3]) \
| map{ it + 1 } \
| view{ it }

}

Running it can be done using:

11

Step by step

> nextflow -q run . -entry step2
WARN: DSL 2 IS AN EXPERIMENTAL FEATURE UNDER DEVELOPMENT -- SYNTAX MAY CHANGE IN FUTURE RELEASE
2
3
4

Step 3 - Operate on a stream using a process

In the previous example, we ran 3 parallel executions each time applying
the same simple function: adding one. Let us simulate now a more real-life
example where parallel executions will not take the same amount of time.
We do this by defining a process and workflow that uses this process. The
rest is similar to our example before.

// Step - 3
process add {

input:
val(input)

output:
val(output)

exec:
output = input + 1

}
workflow step3 {

Channel.from([1, 2, 3]) \
| add \
| view{ it }

}

Running it is again the same.

> nextflow -q run . -entry step3
WARN: DSL 2 IS AN EXPERIMENTAL FEATURE UNDER DEVELOPMENT -- SYNTAX MAY CHANGE IN FUTURE RELEASE
2
4
3

The result will be a permutation of 2,3 and 4. Try it multiple times to verify
for yourself that the order is not guaranteed to be the same. Even though
the execution times will not be that much different! In other words, a Chan-
nel does not guarantee the order, and that’s a good thing.

Step 4 - How map is synchronous
An illustrative test is one where we do not use a process for the execution,
but rather just map but such that one of the inputs takes longer to process,
i.e.:

12

// Step - 4
def waitAndReturn(it) { sleep(2000); return it }
workflow step4 {

Channel.from([1, 2, 3]) \
| map{ (it == 2) ? waitAndReturn(it) : it } \
| map{ it + 1 } \
| view{ it }

}

Running it:

> nextflow -q run . -entry step4
WARN: DSL 2 IS AN EXPERIMENTAL FEATURE UNDER DEVELOPMENT -- SYNTAX MAY CHANGE IN FUTURE RELEASE
2
3
4

The result may be somewhat unexpected, the order is retained even though
there’s a 2 second delay between the first entry and the rest. The sleep in
other words blocks all the parallel execution branches.

This is a clear indication of why it’s better to use a process to execute com-
putations. On the other hand, as long as we stay inside the map and don’t
run a process, the order is retained. This opens up possibilities that we will
exploit in what follows.

Step 5 - Introduce an ID

If we can not guarantee the order of the different parallel branches, we
should introduce a branch ID. This may be a label, a sample ID, a batch ID,
etc. It’s the unit of parallelization.

// Step - 5
process addTuple {

input:
tuple val(id), val(input)

output:
tuple val("${id}"), val(output)

exec:
output = input + 1

}
workflow step5 {

Channel.from([1, 2, 3]) \
| map{ el -> [el.toString(), el]} \
| addTuple \
| view{ it }

}

We can run this code sample in the same way as the previous examples:

13

> nextflow -q run . -entry step5
WARN: DSL 2 IS AN EXPERIMENTAL FEATURE UNDER DEVELOPMENT -- SYNTAX MAY CHANGE IN FUTURE RELEASE
[3, 4]
[1, 2]
[2, 3]

Please note that the function to add 1 remains exactly the same, we only
added the id as the first element of the tuple in both input and output. As
such we keep a handle on which sample is which, by means of the key in
the tuple.

Note: Later, we will extend this tuple and add configuration parameters to
it… but this was supposed to go step by step.

Step 6 - Add a process parameter
What if we want to be able to configure the term in the sum? This would
require a parameter to be sent with the process invocation. Let’s see how
this can be done.
// Step - 6
process addTupleWithParameter {

input:
tuple val(id), val(input), val(term)

output:
tuple val("${id}"), val(output)

exec:
output = input + term

}
workflow step6 {
Channel.from([1, 2, 3]) \

| map{ el -> [el.toString(), el, 10]} \
| addTupleWithParameter \
| view{ it }

}

The result is:
> nextflow -q run . -entry step6
WARN: DSL 2 IS AN EXPERIMENTAL FEATURE UNDER DEVELOPMENT -- SYNTAX MAY CHANGE IN FUTURE RELEASE
[2, 12]
[1, 11]
[3, 13]

This works, but is not very flexible. What if we want to configure the opera-
tor as well? What if we want to have branch-specific configuration? We can
add a whole list of parameters, but that means that the process signature
may be different for every process that we define. That is not a preferred
solution.

Step 7 - Use a Map to store parameters
Let us use a simple Map to add 2 configuration parameters:

14

// Step - 7
process addTupleWithMap {

input:
tuple val(id), val(input), val(config)

output:
tuple val("${id}"), val(output)

exec:
output = (config.operator == "+")

? input + config.term
: input - config.term

}
workflow step7 {

Channel.from([1, 2, 3]) \
| map{ el ->

[
el.toString(),
el,
["operator" : "-", "term" : 10]

] } \
| addTupleWithMap \
| view{ it }

}

The result is:
> nextflow -q run . -entry step7
WARN: DSL 2 IS AN EXPERIMENTAL FEATURE UNDER DEVELOPMENT -- SYNTAX MAY CHANGE IN FUTURE RELEASE
[2, -8]
[3, -7]
[1, -9]

Step 8 - Use a Map with a process-key
Step 7 provides a way to use a consistent API for a process. Ideally, how-
ever, we would like different process invocation to be chained rather than
to explicitly add the correct configuration all the time. Let us add an addi-
tional key to the map, so that a process knows it’s scope.

15

// Step - 8
process addTupleWithProcessHash {

input:
tuple val(id), val(input), val(config)

output:
tuple val("${id}"), val(output)

exec:
def thisConf = config.addTupleWithProcessHash
output = (thisConf.operator == "+")

? input + thisConf.term
: input - thisConf.term

}
workflow step8 {

Channel.from([1, 2, 3]) \
| map{ el ->

[
el.toString(),
el,
["addTupleWithProcessHash" :

[
"operator" : "-",
"term" : 10

]
]

] } \
| addTupleWithProcessHash \
| view{ it }

}

Which yields:

> nextflow -q run . -entry step8
WARN: DSL 2 IS AN EXPERIMENTAL FEATURE UNDER DEVELOPMENT -- SYNTAX MAY CHANGE IN FUTURE RELEASE
[3, -7]
[2, -8]
[1, -9]

Please note that we used the process name as a key in the map, so that
each process can tell what configuration parameter are relevant for its own
scope. We call this Map a ConfigMap.

Step 9 - Use a ConfigMap with a shell script
We used native Groovy code in the process examples above. Let us now use a
shell script:

16

// Step - 9
process addTupleWithProcessHashScript {

input:
tuple val(id), val(input), val(config)

output:
tuple val("${id}"), stdout

script:
def thisConf = config.addTupleWithProcessHashScript
def operator = thisConf.operator
def term = thisConf.term
"""
echo \$(expr $input $operator ${thisConf.term})
"""

}
workflow step9 {

Channel.from([1, 2, 3]) \
| map{ el ->

[
el.toString(),
el,
["addTupleWithProcessHashScript" :

[
"operator" : "-",
"term" : 10

]
]

] } \
| addTupleWithProcessHashScript \
| view{ it }

}

Running this (in the same way as before), we get something along these
lines:
> nextflow -q run . -entry step9
WARN: DSL 2 IS AN EXPERIMENTAL FEATURE UNDER DEVELOPMENT -- SYNTAX MAY CHANGE IN FUTURE RELEASE
[2, -8
]
[1, -9
]
[3, -7
]

This is because the stdout qualifier captures the newline at the end of the
code block. We could look for ways to circumvent that, but that is not the
point here.

What’s important to notice here:

1. We can not just retrieve individual entries in config in the shell, we have
to let Groovy do that.

2. That means we either first retrieve individual values and store them in a
variable,

3. or we use the ${...} notation for that.

17

4. If we want to use bash variables, the $ symbol has to be escaped.

Obviously, passing config like this requires a lot of typing (especially as
additional parameters are introduced) and is error prone.

A DiFlow module selects the appropriate key from a ConfigMap and uses that
as its configuration settings. In a sense, we scope the global ConfigMap and use
it as a local variable within a module. A module could also update the global
ConfigMap and there may be cases where this is necessary, but care should be
taken to update the global state like this.

The scoping done can be seen as a Functional Lens18, although it’s a poor 18 https://medium.com/@d
tipson/functional- lenses-
d1aba9e52254

man’s implementation at that. Furthermore, in some FRP frameworks, so-
called reducers or transducers are used for transforming state in an applica-
tion. We did not (yet) consider the further extension in that direction.

Step 10 - Running a pipeline
We used the pipe | symbol to combine different steps in a pipeline and we
noticed that a process can do computations on parallel branches. That’s
nice, but we have not yet given an example of running 2 processes, one
after the other.

There are a few things we have to note before we go to an example:

1. It’s not possible to call the same process twice, a strange error occurs in
that case19. 19 It is possible in some cases

however to manipulate the
Channel such that a process
is effectively run twice on the
same data, but that is a more
advanced topic.

2. If we want to pipe the output of one process as input of the next, the
I/O signature needs to be exactly the same, so the output of the process
should be a triplet as well.

18

https://medium.com/@dtipson/functional-lenses-d1aba9e52254
https://medium.com/@dtipson/functional-lenses-d1aba9e52254
https://medium.com/@dtipson/functional-lenses-d1aba9e52254
https://medium.com/@dtipson/functional-lenses-d1aba9e52254

// Step - 10
process process_step10a {

input:
tuple val(id), val(input), val(term)

output:
tuple val("${id}"), val(output), val("${term}")

exec:
output = input.toInteger() + term.toInteger()

}
process process_step10b {

input:
tuple val(id), val(input), val(term)

output:
tuple val("${id}"), val(output), val("${term}")

exec:
output = input.toInteger() - term.toInteger()

}
workflow step10 {

Channel.from([1, 2, 3]) \
| map{ el -> [el.toString(), el, 10] } \
| process_step10a \
| process_step10b \
| view{ it }

}

The result of this is that first 10 is added and then the same 10 is sub-
tracted again, which results in the same as the original. Please note that
the output contains 3 elements, also the term passed to the process:

> nextflow -q run . -entry step10
WARN: DSL 2 IS AN EXPERIMENTAL FEATURE UNDER DEVELOPMENT -- SYNTAX MAY CHANGE IN FUTURE RELEASE
[1, 1, 10]
[3, 3, 10]
[2, 2, 10]

We can configure the second process (subtraction) by adding an additional
map in the mix:

// Step - 10a
workflow step10a {

Channel.from([1, 2, 3]) \
| map{ el -> [el.toString(), el, 10] } \
| process_step10a \
| map{ id, value, term -> [id, value, 5] } \
| map{ [it[0], it[1], 5] } \
| map{ x -> [x[0], x[1], 5] } \
| process_step10b \
| view{ it }

}

Resulting in:

19

> nextflow -q run . -entry step10a
WARN: DSL 2 IS AN EXPERIMENTAL FEATURE UNDER DEVELOPMENT -- SYNTAX MAY CHANGE IN FUTURE RELEASE
[1, 6, 5]
[2, 7, 5]
[3, 8, 5]

Please note that we define the closure in a different manner here, using the
special variable it. We could also write (to the same effect):

...
| map{ x -> [x[0], x[1], 5] } \
...

or even
...
| map{ id, value, term -> [id, value, 5] } \
...

Step 11 - A more generic process
What if we rewrite the previous using some of the techniques introduced
earlier. Let us specify the operator as a parameter and try to stick to just 1
process definition.

// Step - 11
process process_step11 {

input:
tuple val(id), val(input), val(config)

output:
tuple val("${id}"), val(output), val("${config}")

exec:
if (config.operator == "+")

output = input.toInteger() + config.term.toInteger()
else

output = input.toInteger() - config.term.toInteger()
}
workflow step11 {

Channel.from([1, 2, 3]) \
| map{ el -> [el.toString(), el, [:]] } \
| process_step11 \
| map{ id, value, config ->

[
id,
value,
["term" : 11, "operator" : "-"]

] } \
| process_step11 \
| view{ [it[0], it[1]] }

}

This little workflow definition results in an error, just like we warned be-
fore:

20

> nextflow -q run . -entry step11
WARN: DSL 2 IS AN EXPERIMENTAL FEATURE UNDER DEVELOPMENT -- SYNTAX MAY CHANGE IN FUTURE RELEASE
assert processConfig==null

|
['echo':false, 'cacheable':true, 'shell':['/bin/bash', '-ue'], 'validExitStatus':[0], 'maxRetries':0, 'maxErrors':-1, 'errorStrategy':TERMINATE]

-- Check script 'main.nf' at line: 248 or see '.nextflow.log' file for more details

There is, however, one simple way around this: include { ... as ...}. Let us
see how this works.

First, we store the process in a file examples/step/step11.nf:

process process_step11 {
input:
tuple val(id), val(input), val(config)

output:
tuple val("${id}"), val(output), val("${config}")

exec:
if (config.operator == "+")

output = input.toInteger() + config.term.toInteger()
else

output = input.toInteger() - config.term.toInteger()
}

The workflow definition becomes:
// Step - 11a
include { process_step11 as process_step11a } \

from './examples/modules/step11.nf'
include { process_step11 as process_step11b } \

from './examples/modules/step11.nf'
workflow step11a {

Channel.from([1, 2, 3]) \
| map{ el -> [el.toString(), el, [:]] } \
| map{ id, value, config ->

[
id,
value,
["term" : 5, "operator" : "+"]

] } \
| process_step11a \
| map{ id, value, config ->

[
id,
value,
["term" : 11, "operator" : "-"]

] } \
| process_step11b \
| view{ [it[0], it[1]] }

}

Running this yields an output similar to this:

21

> nextflow -q run . -entry step11a
WARN: DSL 2 IS AN EXPERIMENTAL FEATURE UNDER DEVELOPMENT -- SYNTAX MAY CHANGE IN FUTURE RELEASE
[1, -5]
[2, -4]
[3, -3]

We made a few minor changes to the workflow code in the meanwhile:

1. Splitting the conversion from an array of items to the triplet is now done
explicitly and separate from specifying the configuration for the process
itself.

2. The view now only contains the relevant parts, not the configuration part
for the last process.

The above example illustrates the include functionality of NextFlow DSL2.
This was not possible with prior versions.

Step 12 - Map/reduce in NextFlow
Let’s implement a simple map/reduce schema with what we developed
above. Until now, we basically covered the mapping stage: starting from 3
independent number, execute a function on each branch individually. Now,
we want to calculate the sum at the end (reduce phase).

We do this by adding a process to the example in Step 10

// Step - 12
process process_step12 {

input:
tuple val(id), val(input), val(term)

output:
tuple val("${id}"), val(output), val("${term}")

exec:
output = input.sum()

}
workflow step12 {

Channel.from([1, 2, 3]) \
| map{ el -> [el.toString(), el, 10] } \
| process_step10a \
| toList \
| map{

[
"sum",
it.collect{ id, value, config -> value },
[:]

] } \
| process_step12 \
| view{ [it[0], it[1]] }

}

Running this yields:

22

> nextflow -q run . -entry step12
WARN: DSL 2 IS AN EXPERIMENTAL FEATURE UNDER DEVELOPMENT -- SYNTAX MAY CHANGE IN FUTURE RELEASE
[sum, 36]

A few remarks are in order here:

1. We use the toList operator on the output of process_step10a. This can
be regarded as merging the 3 parallel branches into one branch. The
result has the signature Channel[List[Triplet]]. This toList operator only
outputs something on the output Channel when all incoming branches
have finished and the merge can effectively be performed.

2. It’s important to note that what is passed through the pipe is still a Chan-
nel, only the number of branches, nodes, or whatever you want to call it
differs.

3. The long map{ ["sum", ... } line may seem complex at first, but it’s re-
ally not. We take in List[Triplet] and convert this to Triplet. The first
element of the triplet is just an identifier (sum). The last is the configura-
tion map, but we don’t need configuration for the sum. As the second
element we want to obtain List[Int], where the values are the 2nd ele-
ment from the original triplets. The Groovy function collect on an array
is like map in many other languages.

The marble diagram can be depicted conceptually as follows, where we
note that in effect it’s triplets rather than numbers that are contained in the
marbles:

Please note that though we define the pipeline sequentially, the 3 numbers
are first handled in parallel and only combined when calling toList. Stated
differently, parallelism comes for free when defining workflows like this.

Step 13 - Files as input/output
Let us tackle a different angle now and start to deal with files as input and
output. In order to do this, we will mimic the functionality from earlier and
modify it such that a file is used as input and output is also written to a file.

The following combination of process and workflow definition does exactly
the same as before, but now from one or more files containing just a single
integer number:

23

// Step - 13
process process_step13 {

input:
tuple val(id), file(input), val(config)

output:
tuple val("${id}"), file("output.txt"), val("${config}")

script:
"""
a=`cat $input`
let result="\$a + ${config.term}"
echo "\$result" > output.txt
"""

}
workflow step13 {

Channel.fromPath(params.input) \
| map{ el ->

[
el.baseName.toString(),
el,
["operator" : "-", "term" : 10]

]} \
| process_step13 \
| view{ [it[0], it[1]] }

}

While doing this, we also introduced a way to specify parameters via a con-
figuration file (nextflow.config) or from the CLI. In this case params.input
points to an argument we should provide on the CLI, for instance:

> nextflow -q run . -entry step13 --input data/input1.txt
WARN: DSL 2 IS AN EXPERIMENTAL FEATURE UNDER DEVELOPMENT -- SYNTAX MAY CHANGE IN FUTURE RELEASE
[input1, <...>/work/17/bde087db08bba02e1a2dcce41c8892/output.txt]

Let’s dissect what is going on here…

1. We provide the input file data/input1.txt as input which gets automati-
cally added to the params map as params.input.

2. The content of input1.txt is used in the simple sum just as before.
3. The output Channel contains the known triplet but this time the second

entry is not a value, but rather a filename.

Please note that the file is output.txt is automatically stored in the (unique)
work directory. We can take a look inside to verify that the calculation suc-
ceeded:
> cat $(nextflow log | cut -f 3 | tail -1 | xargs nextflow log)/output.txt
11

It seems the calculation went well, although one might be surprised by two
things:

1. The output of the calculation is stored in some randomly generated work
directory whereas we might want it somewhere more findable.

2. The process itself defines the value of the output filename, which may
seem odd… and it is.

24

Taking our example a bit further and exploiting the fact that parallelism is
natively supported by NextFlow as we’ve seen before, we can pass multiple
input files to the same workflow defined above.

> nextflow -q run . -entry step13 --input "data/input?.txt"
WARN: DSL 2 IS AN EXPERIMENTAL FEATURE UNDER DEVELOPMENT -- SYNTAX MAY CHANGE IN FUTURE RELEASE
[input3, <...>/work/7b/1d1d756ff5c66dbc56daa6793ec324/output.txt]
[input1, <...>/work/6c/c09325a112f2a749ec10cacd222e47/output.txt]
[input2, <...>/work/0e/7b5a91a27313b0218ac5fcf8f2b09a/output.txt]

Please note that we

1. provide the absolute path to the file
2. use a wildcard * to select multiple files
3. enclose the path (with wildcard) in double quotes to avoid shell globbing.

In the latter case, we end up with 3 output files, each named output.txt in
their own respective (unique) work directory.

> nextflow log | cut -f 3 | tail -1 | xargs nextflow log | xargs ls
<...>/work/0e/7b5a91a27313b0218ac5fcf8f2b09a:
input2.txt
output.txt

<...>/work/6c/c09325a112f2a749ec10cacd222e47:
input1.txt
output.txt

<...>/work/7b/1d1d756ff5c66dbc56daa6793ec324:
input3.txt
output.txt

Step 14 - Publishing output
Let us tackle one of the pain points of the previous example: output files
are hidden in the work directory. One might be tempted to specify an output
file in the process definition as such file("<somepath>/output.txt") but when
you try this, it will quickly turn out that this does not work in the long run
(though it may work for some limited cases).

NextFlow provides a better way to achieve the required functionality: pub-
lishDir20. Let us illustrate its use with an example again and just adding the 20 https://www.nextflow.io/do

cs/latest/process.html?highlight
=publish#publishdir

publishDir directive:

25

https://www.nextflow.io/docs/latest/process.html?highlight=publish#publishdir
https://www.nextflow.io/docs/latest/process.html?highlight=publish#publishdir
https://www.nextflow.io/docs/latest/process.html?highlight=publish#publishdir
https://www.nextflow.io/docs/latest/process.html?highlight=publish#publishdir
https://www.nextflow.io/docs/latest/process.html?highlight=publish#publishdir

// Step - 14
process process_step14 {

publishDir "output/"
input:

tuple val(id), file(input), val(config)
output:

tuple val("${id}"), file("output.txt"), val("${config}")
script:

"""
a=`cat $input`
let result="\$a + ${config.term}"
echo "\$result" > output.txt
"""

}
workflow step14 {

Channel.fromPath(params.input) \
| map{ el ->
[

el.baseName.toString(),
el,
["operator" : "-", "term" : 10]

]} \
| process_step14 \
| view{ [it[0], it[1]] }

}

This single addition yields:

> nextflow -q run . -entry step14 --input data/input1.txt
WARN: DSL 2 IS AN EXPERIMENTAL FEATURE UNDER DEVELOPMENT -- SYNTAX MAY CHANGE IN FUTURE RELEASE
[input1, <...>/work/1a/9fe9ead2ecfcf5db71d5c6a3acfeda/output.txt]

This example shows us a powerful approach to publishing data. There is
a similar drawback as for the output filenames, however, and that is that
the process defines the output directory explicitly. But there is a different
problem as well, which can be observed when running on multiple input
files:
> nextflow -q run . -entry step14 --input "data/input?.txt"
WARN: DSL 2 IS AN EXPERIMENTAL FEATURE UNDER DEVELOPMENT -- SYNTAX MAY CHANGE IN FUTURE RELEASE
[input3, <...>/work/87/81d9a9c9a7ab73110834aa6d1cffcc/output.txt]
[input2, <...>/work/5f/85dfd25d7b0156782200fede6d9bc3/output.txt]
[input1, <...>/work/8e/028d5c3c1f072f5edc6d306f998ad2/output.txt]

> cat output/output.txt
11

What do you think happens here? Yes, sure, we publish the same output.txt
file three times and each time overwriting the same file. The last one is the
one that persists.

26

Step 15 - Make output files/paths unique
Let us describe a way to avoid the above issue. There are other approaches
to resolve this issue, but let us for the moment look at one that can easily
be reused.
// Step - 15
process process_step15 {

publishDir "output/${config.id}"
input:

tuple val(id), file(input), val(config)
output:

tuple val("${id}"), file("output.txt"), val("${config}")
script:

"""
a=`cat $input`
let result="\$a + ${config.term}"
echo "\$result" > output.txt
"""

}
workflow step15 {

Channel.fromPath(params.input) \
| map{ el ->

[
el.baseName,
el,
[
"id": el.baseName,
"operator" : "-",
"term" : 10

]
] } \

| process_step15 \
| view{ [it[0], it[1]] }

}

This results in the following:

> nextflow -q run . -entry step15 --input "data/input?.txt"
WARN: DSL 2 IS AN EXPERIMENTAL FEATURE UNDER DEVELOPMENT -- SYNTAX MAY CHANGE IN FUTURE RELEASE
[input3, <...>/work/a1/0947168c069ee6f4e1e7a850f268ea/output.txt]
[input1, <...>/work/d2/41f7e0ec2fb3f8e4204aca6bf952ab/output.txt]
[input2, <...>/work/f5/845a17a4e548c531b7c63a06e50304/output.txt]

With the following result:

> cat output/input?/output.txt
11
12
13

In other words, since (in this case 3) parallel branches each write to the
same output location we have to make sure that we add something unique
for every of the parallel branches. Another approach is to tweak the name

27

of the output file in the process, but for the moment it is still fixed and de-
fined in the process itself. Let us take a look at that aspect next.

Step 16 - Where to put params?
We want the output filename to be configurable. That means that we either
use the params map for this (and take care it is available in modules that are
included) or we pass it to the process as part of the input. Let us explore
both scenarios.

But first, we need to understand a bit better where the contents of params
comes from. We already covered a few examples where we specify a params
key on the CLI. There is another way as well, via nextflow.config. In it, we
can add a scope params and add the configuration there.

Let us reconsider the previous example (step15) but this time add a
nextflow.config file like this (please update the <...> part according to your
situation):

params.input = “$PWD/data/input?.txt”

Let us illustrate the effect by means of two examples:

> nextflow -q run . -entry step15
WARN: DSL 2 IS AN EXPERIMENTAL FEATURE UNDER DEVELOPMENT -- SYNTAX MAY CHANGE IN FUTURE RELEASE
[input3, <...>/work/d3/3b7016780d0a10bc43a4a1e303edbc/output.txt]
[input1, <...>/work/e8/52a69a6234d9008041151f0ddaea06/output.txt]
[input2, <...>/work/c9/ff527e7934c309ec34ee4fabdf0654/output.txt]

> nextflow -q run . -entry step15 --input data/input1.txt
WARN: DSL 2 IS AN EXPERIMENTAL FEATURE UNDER DEVELOPMENT -- SYNTAX MAY CHANGE IN FUTURE RELEASE
[input1, <...>/work/4a/9479b71506cc1ca0c536ad587498af/output.txt]

In other words, params can be defined in nextflow.config but if it appears on
the CLI then the latter gets priority. Please be reminded that params is a map,
the following is equivalent:

params {
input = "/.../diflow/data/*.txt"

}

Step 17 - Add the output file to params

In this case, we would add a output = ... key to nextflow.config or provide
--output ... on the CLI. This is done in the following example:

28

// Step - 17
process process_step17 {

publishDir "output"
input:

tuple val(id), file(input), val(config)
output:

tuple val("${id}"), file(params.output), val("${config}")
script:

"""
a=`cat $input`
let result="\$a + ${config.term}"
echo "\$result" > ${params.output}
"""

}
workflow step17 {

Channel.fromPath(params.input) \
| map{ el ->
[

el.baseName.toString(),
el,
[
"id": el.baseName,
"operator" : "-",
"term" : 10

]
] } \

| process_step17 \
| view{ [it[0], it[1]] }

}

The code that is run:
> nextflow -q run . -entry step17 --input data/input.txt --output output.txt
WARN: DSL 2 IS AN EXPERIMENTAL FEATURE UNDER DEVELOPMENT -- SYNTAX MAY CHANGE IN FUTURE RELEASE
[input, <...>/work/b1/7f1b50fa5f6e9fdb83bc656e8946e7/output.txt]

The result is:
> cat output/output.txt
11

We note that the params.output occurs in the output: triplet as well as in the
script code itself. That’s quite important, otherwise NextFlow will complain
the output file can not be found.

This approach does what it is supposed to do: make the output filename
configurable. There are a few drawbacks however:

1. We would have to configure the filename for every process individually.
While this can be done (params.<process>.output for instance), it requires
additional bookkeeping on the side of the pipeline developer.

2. It does not help much because the output filename for every parallel
branch again has the same name. In other words, we still have to have
the publishDir

29

In all fairness, these issues only arise when you want to publish the output
data because in the other case every process lives in its own (unique) work
directory.

Step 18 - Add the output filename to the triplet
The other approach to take is to add the output filename to the triplet pro-
vided as input to the process. This can be done similarly to what we did with
the input filename, i.e.:

// Step - 18
process process_step18 {

publishDir "output"
input:

tuple val(id), file(input), val(config)
output:

tuple val("${id}"), file("${config.output}"), val("${config}")
script:

"""
a=`cat $input`
let result="\$a + ${config.term}"
echo "\$result" > ${config.output}
"""

}
workflow step18 {

Channel.fromPath(params.input) \
| map{ el -> [

el.baseName.toString(),
el,
[

"output" : "output_from_${el.baseName}.txt",
"id": el.baseName,
"operator" : "-",
"term" : 10

]
]} \

| process_step18 \
| view{ [it[0], it[1]] }

}

In order to make a bit more sense of the (gradually growing) configuration
map that is sent to the process, we tuned the layout a bit. In this case, the
output filename that is configured contains an identifier for the input as
well. In this way, the output is always unique.

Since we have configured params.input in nextflow.config, we are able to just
run our new pipeline:

30

> nextflow -q run . -entry step18
WARN: DSL 2 IS AN EXPERIMENTAL FEATURE UNDER DEVELOPMENT -- SYNTAX MAY CHANGE IN FUTURE RELEASE
[input3, <...>/work/9b/7a08a98e8ebf69b0781e06ac95d4d6/output_from_input3.txt]
[input1, <...>/work/e1/2a333f9af260daaad4b86636426004/output_from_input1.txt]
[input2, <...>/work/30/90bc0238055daacc9fdeea3f232c27/output_from_input2.txt]

> ls -1 output/output_from*
output/output_from_input1.txt
output/output_from_input2.txt
output/output_from_input3.txt

In other words, this allows to distinguish between parallel branches in the
pipeline.

Please note that if we add steps to the pipeline, because the output is re-
ported as input for the next process, it automatically points to the correct
filename even though the next process is not aware of the way the output
filename has been specified. That’s nice.

Step 19 - Use a closure
We mentioned that there are 2 ways to pass an output filename to a process.
There is a third one, using a closure or function to handle the naming for
us.

Let us illustrate this with an example again:

31

// Step - 19
def out_from_in = { it -> it.baseName + "-out.txt" }
process process_step19 {

publishDir "output"
input:

tuple val(id), file(input), val(config)
output:

tuple val("${id}"), file("${out}"), val("${config}")
script:

out = out_from_in(input)
"""
a=`cat $input`
let result="\$a + ${config.term}"
echo "\$result" > ${out}
"""

}
workflow step19 {

Channel.fromPath(params.input) \
| map{ el -> [

el.baseName.toString(),
el,
[

"id": el.baseName,
"operator" : "-",
"term" : 10

]
]} \

| process_step19 \
| view{ [it[0], it[1]] }

}

The result is as follows:
> nextflow -q run . -entry step19
WARN: DSL 2 IS AN EXPERIMENTAL FEATURE UNDER DEVELOPMENT -- SYNTAX MAY CHANGE IN FUTURE RELEASE
[input2, <...>/work/a3/2c69f0be071c1e2170a19f6f397dda/input2-out.txt]
[input3, <...>/work/0a/e2dc41121ad3b619348d3abc985839/input3-out.txt]
[input1, <...>/work/04/18d42a25a1923a3ff15cf5f6a7aae8/input1-out.txt]

We can even add the closure to the configuration map sent to the process,
but NextFlow complains that this is not serializable so you may miss some
features and most importantly it may not work at all times:

WARN: Cannot serialize context map. Cause: java.lang.IllegalArgumentException: Unknown workflow parameter definition: map -
- Resume will not work on this process

This approach may seem like completely over-engineered but for a lot of
use-cases it turns out to be a good fit. Although, not in the way we intro-
duced it here. We come back to that later…

A DiFlow module contains a function definition that takes the input file name
as input and generates an output filename.

32

Step 20 - The order of events in a stream
We touch upon a point that we have encountered but not really considered
in-depth: the order of things in the Channel or stream. We’ve noticed that the
order is not predictable and we’ve discussed that this is to be expected. In
general, the duration of a process step may depend on the data or the num-
ber of resources available at the time of running. Also, the example where
we joined the different parallel branches (Step 12 - REF) was independent of
the order because it just calculated the sum.

Another consequence of the undetermined order of events is the fact that
during a join or reduce phase (for instance with toList), the resulting order
is undetermined and this messes up the caching functionality of NextFlow.

Let us give an example with a reduce process that does depend on the order
of events. We divide the first element from the map phase by the second
one:
// Step - 20a
process process_step20 {

input:
tuple val(id), val(input), val(term)

output:
tuple val("${id}"), val(output), val("${term}")

exec:
output = input[0] / input[1]

}
workflow step20a {

Channel.from([1, 2]) \
| map{ el -> [el.toString(), el, 10] } \
| process_step10a \
| toList \
| map{ [

"sum",
it.collect{ id, value, config -> value },
[:]

] } \
| process_step20 \
| view{ [it[0], it[1]] }

}

If you run this code like this, you get something like this when launching
multiple times:

> nextflow -q run . -entry step20a -with-docker
WARN: DSL 2 IS AN EXPERIMENTAL FEATURE UNDER DEVELOPMENT -- SYNTAX MAY CHANGE IN FUTURE RELEASE
[sum, 0.9166666667]

> nextflow -q run . -entry step20a -with-docker
WARN: DSL 2 IS AN EXPERIMENTAL FEATURE UNDER DEVELOPMENT -- SYNTAX MAY CHANGE IN FUTURE RELEASE
[sum, 1.0909090909]

As an illustration, I’ve added the -with-docker option.

Luckily, there is a variant of the toList channel operator that takes into

33

account sorting: toSortedList. There are other operators as well, but we
leave it as an exercise to look those up. The workflow code above simply
becomes:
// Step - 20b
workflow step20b {

Channel.from([1, 2]) \
| map{ el -> [el.toString(), el, 10] } \
| process_step10a \
| toSortedList{ a,b -> a[0] <=> b[0] } \
| map{ ["sum", it.collect{ id, value, config -> value }, [:]] } \
| process_step20 \
| view{ [it[0], it[1]] }

}

In this example, we sort (alphabetically) on the id in the triplet.

Step 21 - Is the triplet really necessary?
A process can take multiple input Channels. But then why are struggling with
triplets above? Why do we make our life harder than it could be? Let us
illustrate this with a little example. We define a process that takes two input
Channels, one containing integers and the other with strings. We simply
concatenate both in the process definition:

// Step - 21
process process_step21 {

input:
val(in1)
val(in2)

output:
val(out)

exec:
out = in1 + in2

}
workflow step21 {

ch1_ = Channel.from([1, 2, 3, 4, 5])
ch2_ = Channel.from(["a", "b", "c", "d"])
process_step21(ch1_, ch2_) | toSortedList | view

}

If we run this, we get the following result:

> nextflow -q run . -entry step21 -with-docker
WARN: DSL 2 IS AN EXPERIMENTAL FEATURE UNDER DEVELOPMENT -- SYNTAX MAY CHANGE IN FUTURE RELEASE
[1a, 2b, 3c, 4d]

This seems fine, it is probably what was expected to happen. If we slightly
change the workflow and add a process step we defined earlier (add):

34

// Step - 21a
workflow step21a {

ch1_ = Channel.from([1, 2, 3, 4, 5]) | add
ch2_ = Channel.from(["a", "b", "c", "d"])
process_step21(ch1_, ch2_) | toSortedList | view

}

Running this two times should reveal the caveat we want to point out;

> nextflow -q run . -entry step21a -with-docker
WARN: DSL 2 IS AN EXPERIMENTAL FEATURE UNDER DEVELOPMENT -- SYNTAX MAY CHANGE IN FUTURE RELEASE
[2d, 3a, 4c, 5b]

> nextflow -q run . -entry step21a -with-docker
WARN: DSL 2 IS AN EXPERIMENTAL FEATURE UNDER DEVELOPMENT -- SYNTAX MAY CHANGE IN FUTURE RELEASE
[2d, 3a, 4c, 6b]

The result is not deterministic. Imagine you want to combine two input
Channels like this, but one of the Channels requires some additional process-
ing first (creating an index or a qc report) then relying on the order of opera-
tions not consistent.

In other words, we need to stick to adding an explicit ID and add it with the
config to the triplet.

Step 22 - Toward generic processes
Dealing with computational pipelines, and looking at the examples above
and beyond, we note that the input of a process is always the same: a triplet.
The output should at least contain the ID and the path to the output file or
directory. We want to provide the ConfigMap as output as well, so that input
and output become consistent and we can easily chain processes.

Going a step further, we might reflect on the nature of the script-part of a
process definition. It contains one or more commands, each with options.
For the sake of the argument, let’s say we need to run one command. We
already know how we can provide parameters for input and output. We can
now also go a step further.

We could, for instance, provide the full command line instruction via the
ConfigMap:

35

// Step - 22
process process_step22 {

publishDir "output"
input:

tuple val(id), file(input), val(config)
output:

tuple val("${id}"), file("${config.output}"), val("${config}")
script:

"""
${config.cli}
"""

}
workflow step22 {

Channel.fromPath(params.input) \
| map{ el -> [

el.baseName.toString(),
el,
[

"cli": "cat input.txt > output22.txt",
"output": "output22.txt"

]
]} \

| process_step22 \
| view{ [it[0], it[1]] }

}
//- - -

Such that
> nextflow -q run . -entry step22 --input data/input.txt
WARN: DSL 2 IS AN EXPERIMENTAL FEATURE UNDER DEVELOPMENT -- SYNTAX MAY CHANGE IN FUTURE RELEASE
[input, <...>/work/cf/0822ca4f216cd2d616d25bc279eaf4/output22.txt]

Unsurprisingly, the content of output22.txt is the same as that of input.txt:

> cat output/output22.txt
1

This may seem silly, but let us make a few remarks anyway:

1. The output file name is specified in two places, that is not a good idea
2. The input file name is specified explicitly in the cli definition. We could

get around by by pointing to params.input instead, keeping in mind cor-
rect escaping and such. It could work, but would be error prone.

3. One could be tempted (we were) to indeed create 1 generic process han-
dler, but when looking at a pipeline run, one would not be able to distin-
guish the different processes from each other because the name of the
process is used as an identifier.

So, while this may seem like a stupid thing to do, we use a method that is
very similar to this in DiFlow. Keeping into account the above points, that
is…

In practice, we do not specify the command line like shown above, but
rather by specifying the command and options by means of the ConfigMap

36

for that specific process. Let us give an example:

params {
...
cellranger {
name = "cellranger"
container = "mapping/cellranger:4.0.0-1"
command = "cellranger"
arguments {

mode {
name = "mode"
otype = "--"
description = "The run mode"
value = "count"
...

}
input {

name = "input"
otype = "--"
description = "Path of folder created by mkfastq or bcl2fastq"
required = false
...

}
id {

name = "id"
otype = "--"
description = "Output folder for the count files."
value = "cr"
required = false
...

}
...

}
...

}

In reality, this is still a simplified version because we also use variables in
nextflow.config but that is only for convenience.

The above is a representation of the command-line instruction to be pro-
vided inside a container (mapping/cellranger:4.0.0-1). The command itself is
cellranger and the different options are listed as keys under arguments.

Every DiFlow module has its own nextflow.config that contains a representation
of the CLI instruction to run as well as a pointer to the container to be used for
running.

We have a function in NextFlow that takes params.cellranger and creates the
CLI that corresponds to it. Values for input and output are set during the
pipeline run based on the input provided and a closure for generating the
output file name. To give an idea of what this CLI rendering looks like, this
is what we use in DiFlow:

A nextflow.config file with content like above is created for every module,
i.e., for every processing step in the pipeline. On the level of the pipeline

37

those config files are sourced, i.e.:

includeConfig '<...>/nextflow.config'

It may seem like a daunting task to create a config file like this for every
computational step, and it is. We are not doing this manually as that would
be too error-prone and frustrating on top of that. We are just laying out the
principles here, later we will see how viash can create the nextflow.config file
for us.

Transforming the relevant section in nextflow.config to a command-line
instruction is done by a Groovy function that simply parses the ConfigMap.

Step 23 - More than one input
It may appear in the above example that input can only be provided as one
variable or file. NextFlow allows you to specify not only wildcards (* for
instance) but also arrays. This comes in handy when multiple input file ref-
erence need to be provided on the CLI. For instance, when doing a mapping
step we usually need to provide a reference file. We could add this refer-
ence file as a parameter (and take it up in nextflow.config but then it would
just be seen as a string value. NextFlow can not know then that it has to
check for existence of the file prior to starting to run the process21. 21 There is more in fact:

NextFlow has some logic
on how to deal with input
files/directories when using
Docker. It will mount the
volumes that contain input
references. If we just add an
input file reference as a string
variable to the CLI, it will not
be visible inside the Docker
container at runtime.

How does a DiFlow module know then what file reference is related to what
option on the CLI? We would obviously not want to run CellRanger count on
a reference file as input and use a fastq file as reference (as if that would
work?!). That means we have to be sure to somehow let the DiFlow module
know what file references correspond to what options on the CLI.

There are three possibilities:

1. There is only one input file: in this case we just have to make sure it is
passed as a Path object to the DIFlow module.

2. There are multiple input files but they correspond to the same option on
the CLI. For instance, cat’ing multiple files where order is not relevant. In
this case, we can simply pass a List[Path] to the DiFlow module.

3. There are multiple input files corresponding to the different options on
the CLI, for instance CellRanger with input and a reference file. In this
case, we pass something like

["input": "<fastq-dir>", "reference": "<reference-dir>"]

While there may be still other possibilities that we may encounter in the
future, these three are covered by the current implementation of DiFlow.

A DiFlow module contains the necessary logic to parse three types of datas-
tructures as input file references: Path, List[Path] and Map[String, List[Path]].

Remark: that the easiest way to create a Path object with the proper point-
ers in a NextFlow context is to use the built-in file() function. It simply
takes a String argument pointing to the file (either relative or absolute).

There’s some more magic going on in the background. For starters, if you
specify just either Path or List[Path], the DiFlow module will retrieve the

38

appropriate command-line option to associate it with automagically. This
way, as a pipeline developer you usually should not care about what exact
command line option is necessary for your input data to be processed.

Step 24 - workflow instead of process
We already have quite some helper functionality that should be provided by
a DiFlow module:

• Generating an output file name based on input
• Parsing different types of input file references
• Selecting the proper key from the (large) ConfigMap stored in the global

params Map.
• Generating the CLI from nextflow.config
• Providing a test case for the module

There is some hidden functionality as well:

• Making sure input and output file references are updated in the ConfigMap
• Dealing with per-sample configuration (upcoming feature)

As it turns out, providing all this functionality in a process is not the proper
way to go, and is even expected not to work. Luckily we can define workflows
in NextFlow’s DSL2 syntax. Such a workflow can be used just like a process in
the above example as long as we take care that the input/output signatures
are aligned with what is expected.

The added benefit of using a workflow rather than a process is that the un-
derlying process can have a different signature. In practice, this is what a
DiFlow process looks like:

process cellranger_process {
...
container "${params.dockerPrefix}${container}"
publishDir "${params.output}/processed_data/${id}/", mode: 'copy', overwrite: true
input:
tuple val(id), path(input), val(output), val(container), val(cli)

output:
tuple val("${id}"), path("${output}")

script:
"""
export PATH="${moduleDir}:\$PATH"
$cli
"""

}

As can be seen, the ConfigMap is not passed to the process but instead the
information in params is used to generate an output filename, extract the
container image and generate the CLI instruction. Please note that input
here points to ALL possible input file references as per Step 23.

The workflow that points to this process is then defined as follows:

39

workflow cellranger {
take:
id_input_params_

main:
...
result_ = ...

emit:
result_

}

Step 25 - Custom scripts
The attentive reader may have noticed the instruction in the script section
in Step 24. It adds the directory of the current module to the $PATH. This
allows us to store scripts or binaries with the NextFlow module and still
be able to call those, even if NextFlow runs all processes from their own
private work directory.

Step 26 - The missing link
Creating and maintaining all the necessary files for a modules, especially
with the amount of (duplicate) boilerplate code in each of them may seem
like a daunting task. It is… Therefore, we developed a tool that is able to
add the boilerplate for us: viash.

viash22 takes as input a specification of a command/tool, how to run and 22 To%20be%20open-sourced%
20soon!test it. viash can then turn this specification into runnable script, a con-

tainerized executable or a NextFlow module.

Putting it all together
In the end, a module consists of the following:

• main.nf contains the code for workflow and process definition. We duplicate
ALL the parsing code (for CLI, input, ConfigMap, etc.) in order for a module
to be effectively standalone.

• nextflow.config contains the ConfigMap for this specific module, scoped
properly.

• Executables or scripts required to be on the $PATH for this module to run
inside the container defined in nextflow.config.

In what follows, we will point to an example pipeline in viash_docs23. This 23 https://github.com/data-
intuitive/viash_docs/blob/mas
ter/examples/civ6_postgame/
main.nf

repository contains the source files needed to generate the DiFlow modules.

Creating a pipeline from these modules is now a matter of:

Generate the modules
Using viash, it’s easy to go from the component definitions under src/ to
proper DiFlow modules:

40

To%20be%20open-sourced%20soon!
To%20be%20open-sourced%20soon!
https://github.com/data-intuitive/viash_docs/blob/master/examples/civ6_postgame/main.nf
https://github.com/data-intuitive/viash_docs/blob/master/examples/civ6_postgame/main.nf
https://github.com/data-intuitive/viash_docs/blob/master/examples/civ6_postgame/main.nf
https://github.com/data-intuitive/viash_docs/blob/master/examples/civ6_postgame/main.nf
https://github.com/data-intuitive/viash_docs/blob/master/examples/civ6_postgame/main.nf

viash ns build -p docker --setup
viash ns build -p nextflow

The first instruction builds the Docker containers needed for the pipeline to
work. The second one builds the NextFlow/DiFlow modules.

Please note that viash allows you to also export to native or containerized bi-
naries as well as run unit tests for the components. This, though, is covered
elsewhere.

Pipeline main.nf

The pipeline logic is contained in main.nf. In order to use the modules de-
fined using DiFlow, they have to be imported. This is the full main.nf file for
the civ6_postgame pipeline:

41

nextflow.preview.dsl=2

import java.nio.file.Paths

include plot_map from './target/nextflow/civ6_save_renderer/plot_map/main.nf' params(params)
include combine_plots from './target/nextflow/civ6_save_renderer/combine_plots/main.nf' params(params)
include convert_plot from './target/nextflow/civ6_save_renderer/convert_plot/main.nf' params(params)
include parse_header from './target/nextflow/civ6_save_renderer/parse_header/main.nf' params(params)
include parse_map from './target/nextflow/civ6_save_renderer/parse_map/main.nf' params(params)
include rename from './src/utils.nf'

workflow {

if (params.debug == true)
println(params)

if (!params.containsKey("input") || params.input == "") {
exit 1, "ERROR: Please provide a --input parameter pointing to .Civ6Save file(s)"

}

def input_ = Channel.fromPath(params.input)

def listToTriplet = { it -> ["all", it.collect{ a -> a[1] }, params] }

input_ \
| map{ it -> [it.baseName , it] } \
| map{ it -> [it[0] , it[1], params] } \
| (parse_header & parse_map) \
| join \
| map{ id, parse_headerOut, params1, parse_mapOut, params2 ->

[id, ["yaml" : parse_headerOut, "tsv": parse_mapOut], params1] } \
| plot_map \
| convert_plot \
| rename \
| toSortedList{ a,b -> a[0] <=> b[0] } \
| map(listToTriplet) \
| combine_plots

}

Given the steps described above, we estimate that it’s possible to under-
stand this pipeline.

Pipeline nextflow.config

This is the config file for the pipeline:

includeConfig 'target/nextflow/civ6_save_renderer/plot_map/nextflow.config'
includeConfig 'target/nextflow/civ6_save_renderer/combine_plots/nextflow.config'
includeConfig 'target/nextflow/civ6_save_renderer/convert_plot/nextflow.config'
includeConfig 'target/nextflow/civ6_save_renderer/parse_header/nextflow.config'
includeConfig 'target/nextflow/civ6_save_renderer/parse_map/nextflow.config'

42

docker {
runOptions = "-i -v ${baseDir}:${baseDir}"

}

Running the pipeline
> nextflow run . \

--input "data/*.Civ6Save" \
--output "output/" \
--combine_plots__framerate 1 \

N E X T F L O W ~ version 20.10.0
Launching `./main.nf` [serene_mercator] - revision: 86da0cc3ec
executor > local (26)
[2c/970402] process > parse_header:parse_header_process (AutoSave_0158) [100%] 5 of 5 �
[7d/c19cfa] process > parse_map:parse_map_process (AutoSave_0162) [100%] 5 of 5 �
[06/4b19be] process > plot_map:plot_map_process (AutoSave_0160) [100%] 5 of 5 �
[fc/3f219c] process > convert_plot:convert_plot_process (AutoSave_0162) [100%] 5 of 5 �
[f2/c24399] process > rename (AutoSave_0162) [100%] 5 of 5 �
[fb/43a707] process > combine_plots:combine_plots_process (all) [100%] 1 of 1 �

Please note that we use an option --combine_plots__framerate 1. This points
to an option of the combine_plots module that is called framerate. In other
words, if a module defines an option (corresponding to a CLI option) it can
be overridden from the CLI by using the convention <module_name>__<module
option> <value>24. 24 See below for more informa-

tion about this and how this is
encoded in nextflow.config.

43

DIFLOW

Parameter checks
We currently do no checks on variables that are set through the ConfigMap.

Multiple output file references
We make an implicit assumption all of the above that the output of a
pipeline step is a single file, or a single directory or a set of files that relate
to each other. What we don’t cover yet is a component that outputs both
the results of analysis and a report, for instance. The reason for this is not
technical but rather that it breaks the logical flow of a pipeline definition.

We currently output 1 type of output from a module, and that allows us to
easily chain modules. A module that would output 2 types of data would
essentially be a fork in the pipeline process. That means that either the
next component knows to expect these two outputs as inputs or we have to
explicitly deal with the two branches of the fork. But then we can not longer
write pipelines like:

step1 | step2 | step3

There is a simple workaround for this kind of situation: Make two compo-
nents/modules that each output either of the outputs. This fits in the API of
a modules and those can again be chained easily. Having said that, we are
thinking of ways to allow the output of multiple output files because this
workaround is not efficient at all.

Per-sample configuration
When running different samples in parallel, one may sometimes want to
have parameters specific to a sample. Filter threshold, for instance, may be
different from sample to sample. Implementing this in DiFlow is not hard
per se, it is more a matter of coming up with a good way to encode this in
nextflow.config and the ConfigMap.

44

What is missing from
DiFlow?

DIFLOW

Variables in nextflow.config

CLI arguments and options for specific components/steps in the pipeline
are configured in the respective nextflow.config files that are imported in
the global one. But that also means that we can not override them from the
CLI anymore. For instance, it is not possible to add an argument in the style
--component.input.value <value>. That means that all options would either be
fixed for the whole pipeline, or to be configured in nextflow.config explicitly.
The latter is possible by means of a custom config file that overrides the
other settings.

There is, however, an easier approach to this: variables in nextflow.config.
The functionality is explained here25 and is used in DiFlow for allowing us 25 https://www.nextflow.io/do

cs/latest/config.html#config-
variables

to provide the (scoped) parameter values on the CLI. For instance, this is an
excerpt from an existing component’s nextflow.config:

params {
...
cellranger_vdj__id = "cr"
...
cellranger_vdj {
name = "cellranger_vdj"
container = "mapping/cellranger_vdj/cellranger_vdj:4.0.0-1"
command = "cellranger_vdj"
arguments {

...
id {

name = "id"
otype = "--"
value = "${params.cellranger_vdj__id}"
...

}
...

If you look at this one parameter for the cellranger_vdj component, you
notice that directly under params, we have the key cellranger_vdj__id. In
other words, the component name followed by a double underscore and
then the parameter name. Since all arguments are named here, we do not
have to have to specify -’s or --’s.

45

Appendix

https://www.nextflow.io/docs/latest/config.html#config-variables
https://www.nextflow.io/docs/latest/config.html#config-variables
https://www.nextflow.io/docs/latest/config.html#config-variables
https://www.nextflow.io/docs/latest/config.html#config-variables

Reasons for an explicit flow
In DiFlow, we do not allow multiple input Channels, but rather make the flow
of data explicit by means of the available Channel operators. There are a few
reasons for this:

1. It’s easier to use a consistent API for modules, so that we don’t need to
know how to call a module

2. This makes for cleaner view on what a pipeline does by looking at the
pipeline code

3. The asynchronous nature of the computations may cause inconsistencies

Let us illustrate the latter point a bit more in detail. In what follows we
define the same process in two scenarios: once where we allow two input
process and once where we define the flow explicitly using the join opera-
tor.

First the process that takes two inputs:

Such that

```sh
> nextflow -q run . -entry join_process -with-dag figures/join_process.png
WARN: DSL 2 IS AN EXPERIMENTAL FEATURE UNDER DEVELOPMENT -- SYNTAX MAY CHANGE IN FUTURE RELEASE
[[1, 11/d], [2, 21/c], [3, 31/b], [4, 41/a]]

The second implementation seems to do the same:

Such that

```sh
> nextflow -q run . -entry join_stream -with-dag figures/join_stream.png
WARN: DSL 2 IS AN EXPERIMENTAL FEATURE UNDER DEVELOPMENT -- SYNTAX MAY CHANGE IN FUTURE RELEASE
[[1, 11a], [2, 21b], [3, 31c], [4, 41d]]

Resources
When you run or export with the DockerTarget, resources are automatically
added to the running container and stored under /resources. In case of the
NativeTarget, this is not the case and since NextFlowTarget uses the Native-
Target it’s the same there. That does not mean that resources specified in
functionality.yaml are not available in these cases, we only have to point to
them where appropriate.

The following snippet (from ct/singler) illustrates this:

46

par = list(
input = "input.h5ad",
output = "output.h5ad",
reference = "HPCA",
outputField = "cellType",
pruningMADS = 3,
outputFieldPruned = "celltype-pruned",
reportOutputPath = "report.md"

)
par$resources_dir <- resources_dir

In other words, resources_dir is automatically created by viash in all current
3 environments. This means that we can point to the report.Rmd file present
in the resources like so:
rmarkdown::render(paste0(par$resources_dir, "/", "report.Rmd"), output_file = par$reportOutputPath)

Default values
In the viash functionality spec, no option should have an empty string as
value!

47

	Introduction
	Functional Reactive Programming (FRP)
	FRP for pipelines

	NextFlow
	Introduction
	FRP in NextFlow
	NextFlow DSL(2)

	DiFlow
	The NoPipeline approach
	General Requirements and design principles
	Reproducibility
	Pipeline Parameters vs Runtime Parameters
	Consistent API
	Flat Module Structure
	Job Serialization

	An abstract computation step
	Toward implementation

	Step by step
	Step 1 - Operate on a stream
	Step 2 - Operate on a stream in parallel
	Step 3 - Operate on a stream using a process
	Step 4 - How map is synchronous
	Step 5 - Introduce an ID
	Step 6 - Add a process parameter
	Step 7 - Use a Map to store parameters
	Step 8 - Use a Map with a process-key
	Step 9 - Use a ConfigMap with a shell script
	Step 10 - Running a pipeline
	Step 11 - A more generic process
	Step 12 - Map/reduce in NextFlow
	Step 13 - Files as input/output
	Step 14 - Publishing output
	Step 15 - Make output files/paths unique
	Step 16 - Where to put params?
	Step 17 - Add the output file to params
	Step 18 - Add the output filename to the triplet
	Step 19 - Use a closure
	Step 20 - The order of events in a stream
	Step 21 - Is the triplet really necessary?
	Step 22 - Toward generic processes
	Step 23 - More than one input
	Step 24 - workflow instead of process
	Step 25 - Custom scripts
	Step 26 - The missing link
	Putting it all together
	Generate the modules
	Pipeline main.nf
	Pipeline nextflow.config
	Running the pipeline

	What is missing from DiFlow?
	Parameter checks
	Multiple output file references
	Per-sample configuration

	Appendix
	Variables in nextflow.config
	Reasons for an explicit flow
	Resources
	Default values

