anndata: annotated data in R

Porting anndata to R with reticulate.

open source
project
Author

See demo

anndata is a commonly used Python package for keeping track of data and learned annotations, and can be used to read from and write to the h5ad file format. It is also the main data format used in the scanpy python package (Wolf, Angerer, and Theis 2018).

anndata

However, using scanpy/anndata in R can be a major hassle. When trying to read an h5ad file, R users could approach this problem in one of two ways. A) You could read in the file manually (since it’s an H5 file), but this involves a lot of manual work and a lot of understanding on how the h5ad and H5 file formats work (also, expect major headaches from cryptic hdf5r bugs). Or B) interact with scanpy and anndata through reticulate, but run into issues converting some of the python objects into R.

We recently published anndata on CRAN, which is an R wrapper for the Python package – with some syntax sprinkled on top to make R users feel more at home.

The R anndata is still under active development at github.com/rcannood/anndata. If you encounter any issues, feel free to post an issue on GitHub!

Installation

Installing anndata is not particularly hard. You do need R and Python to be installed. If you don’t have a working installation of Python, you can let reticulate install Miniconda.

# install the R anndata package
install.packages("anndata")

# skip this if you wish to use the local python installation
reticulate::install_miniconda()

# skip this if anndata is already installed
anndata::install_anndata()

Getting started

The API of anndata is very similar to its Python counterpart. Check out ?anndata for a full list of the functions provided by this package.

AnnData stores a data matrix X together with annotations of observations obs (obsm, obsp), variables var (varm, varp), and unstructured annotations uns.

Here is an example of how to create an AnnData object with 2 observations and 3 variables.

library(anndata)

ad <- AnnData(
  X = matrix(1:6, nrow = 2),
  obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2")),
  var = data.frame(type = c(1L, 2L, 3L), row.names = c("var1", "var2", "var3")),
  layers = list(
    spliced = matrix(4:9, nrow = 2),
    unspliced = matrix(8:13, nrow = 2)
  ),
  obsm = list(
    ones = matrix(rep(1L, 10), nrow = 2),
    rand = matrix(rnorm(6), nrow = 2),
    zeros = matrix(rep(0L, 10), nrow = 2)
  ),
  varm = list(
    ones = matrix(rep(1L, 12), nrow = 3),
    rand = matrix(rnorm(6), nrow = 3),
    zeros = matrix(rep(0L, 12), nrow = 3)
  ),
  uns = list(
    a = 1, 
    b = data.frame(i = 1:3, j = 4:6, value = runif(3)),
    c = list(c.a = 3, c.b = 4)
  )
)

ad
AnnData object with n_obs × n_vars = 2 × 3
    obs: 'group'
    var: 'type'
    uns: 'a', 'b', 'c'
    obsm: 'ones', 'rand', 'zeros'
    varm: 'ones', 'rand', 'zeros'
    layers: 'spliced', 'unspliced'

You can read the information back out using the $ notation.

ad$X
   var1 var2 var3
s1    1    3    5
s2    2    4    6
ad$obs
   group
s1     a
s2     b
ad$obsm[["ones"]]
     [,1] [,2] [,3] [,4] [,5]
[1,]    1    1    1    1    1
[2,]    1    1    1    1    1
ad$layers[["spliced"]]
   var1 var2 var3
s1    4    6    8
s2    5    7    9
ad$uns[["b"]]
  i j      value
1 1 4 0.03063135
2 2 5 0.97626754
3 3 6 0.70391182

Using scanpy

A nice side-effect of loading this package is that it is now super easy to interact with scanpy through these AnnData objects.

library(reticulate)

ad$X
   var1 var2 var3
s1    1    3    5
s2    2    4    6
sc <- import("scanpy")
sc$pp$normalize_per_cell(ad)

ad$X
       var1 var2     var3
s1 1.166667  3.5 5.833333
s2 1.750000  3.5 5.250000

Reading / writing AnnData objects

Read from h5ad format:

read_h5ad("pbmc_1k_protein_v3_processed.h5ad")
## AnnData object with n_obs × n_vars = 713 × 33538
##     var: 'gene_ids', 'feature_types', 'genome', 'highly_variable', 'means', 'dispersions', 'dispersions_norm'
##     uns: 'hvgParameters', 'normalizationParameters', 'pca', 'pcaParameters'
##     obsm: 'X_pca'
##     varm: 'PCs'

Creating a view

You can use any of the regular R indexing methods to subset the AnnData object. This will result in a ‘View’ of the underlying data without needing to store the same data twice.

view <- ad[, 2]
view
View of AnnData object with n_obs × n_vars = 2 × 1
    obs: 'group', 'n_counts'
    var: 'type'
    uns: 'a', 'b', 'c'
    obsm: 'ones', 'rand', 'zeros'
    varm: 'ones', 'rand', 'zeros'
    layers: 'spliced', 'unspliced'
view$is_view
[1] TRUE
ad[,c("var1", "var2")]
View of AnnData object with n_obs × n_vars = 2 × 2
    obs: 'group', 'n_counts'
    var: 'type'
    uns: 'a', 'b', 'c'
    obsm: 'ones', 'rand', 'zeros'
    varm: 'ones', 'rand', 'zeros'
    layers: 'spliced', 'unspliced'
ad[-1, ]
View of AnnData object with n_obs × n_vars = 1 × 3
    obs: 'group', 'n_counts'
    var: 'type'
    uns: 'a', 'b', 'c'
    obsm: 'ones', 'rand', 'zeros'
    varm: 'ones', 'rand', 'zeros'
    layers: 'spliced', 'unspliced'

AnnData as a matrix

The X attribute can be used as an R matrix:

ad$X[,c("var1", "var2")]
       var1 var2
s1 1.166667  3.5
s2 1.750000  3.5
ad$X[-1, , drop = FALSE]
   var1 var2 var3
s2 1.75  3.5 5.25
ad$X[, 2] <- 10

You can access a different layer matrix as follows:

ad$layers["unspliced"]
   var1 var2 var3
s1    8   10   12
s2    9   11   13
ad$layers["unspliced"][,c("var2", "var3")]
   var2 var3
s1   10   12
s2   11   13

Note on state

If you assign an AnnData object to another variable and modify either, both will be modified:

ad2 <- ad

ad$X[,2] <- 10

list(ad = ad$X, ad2 = ad2$X)
$ad
       var1 var2     var3
s1 1.166667   10 5.833333
s2 1.750000   10 5.250000
$ad2
       var1 var2     var3
s1 1.166667   10 5.833333
s2 1.750000   10 5.250000

This is standard Python behaviour but not R. In order to have two separate copies of an AnnData object, use the $copy() function:

ad3 <- ad$copy()

ad$X[,2] <- c(3, 4)

list(ad = ad$X, ad3 = ad3$X)
$ad
       var1 var2     var3
s1 1.166667    3 5.833333
s2 1.750000    4 5.250000
$ad3
       var1 var2     var3
s1 1.166667   10 5.833333
s2 1.750000   10 5.250000

Future work

In some cases, this package may still act more like a Python package rather than an R package. Some more helper functions and helper classes need to be defined in order to fully encapsulate AnnData() objects. Examples are:

ad$chunked_X(1)
<generator object AnnData.chunked_X at 0x7f8d3424eac0>

Following functionality has not been tested:

ad$rename_categories(...)
ad$strings_to_categoricals(...)

Currently not implemented are the read_zarr() and ad$write_zarr() functions. I need some example data to test this functionality.

References

Wolf, F Alexander, Philipp Angerer, and Fabian J Theis. 2018. “SCANPY: Large-Scale Single-Cell Gene Expression Data Analysis.” Genome Biology 19 (February): 15. https://doi.org/10.1186/s13059-017-1382-0.

Elevate your data workflows

Transform your data workflows with Data Intuitive’s complete support from start to finish.

Our team can assist with defining requirements, troubleshooting, and maintaining the final product, all while providing end-to-end support.

Contact Us